Bangkok Post

FRUITS OF INNOVATION

Robots are a growing presence on the farm

- KNVUL SHEIKH NYT

In a research field off Highway 54 last year, corn stalks shimmered in rows 10m deep. Girish Chowdhary, an agricultur­al engineer at the University of Illinois at Urbana-Champaign, bent to place a small white robot at the edge of a row marked 103. The robot, named TerraSenti­a, resembled a souped up version of a lawnmower, with all-terrain wheels and a high-resolution camera on each side.

In much the same way that self-driving cars “see” their surroundin­gs, TerraSenti­a navigates a field by sending out thousands of laser pulses to scan its environmen­t. A few clicks on a tablet were all that were needed to orient the robot at the start of the row before it took off, squeaking slightly as it drove over ruts in the field.

“It’s going to measure the height of each plant,” Chowdhary said.

It would do that and more. The robot is designed to generate the most detailed portrait possible of a field, from the size and health of the plants to the number and quality of ears each corn plant will produce by the end of the season, so that agronomist­s can breed even better crops. In addition to plant height, TerraSenti­a can measure stem diameter, leaf-area index and “stand count” — the number of live grainor fruit-producing plants — or all of those traits at once. And Chowdhary is working on adding even more traits, or phenotypes, to the list with the help of colleagues at EarthSense, a spin-off company that he created to manufactur­e more robots.

Traditiona­lly, plant breeders have measured these phenotypes by hand and used them to select plants with the very best characteri­stics for creating hybrids. The advent of DNA sequencing has helped, enabling breeders to isolate genes for some desirable traits, but it still takes a human to assess whether the genes isolated from the previous generation actually led to improvemen­ts in the next one.

A BLOSSOMING OF BOTS

“The idea is that robots can automate the phenotypin­g process and make these measuremen­ts more reliable,” Chowdhary said. In doing so, the TerraSenti­a and others like it can help optimise the yield of farms far beyond what humans alone have been able to accomplish.

Automation has always been a big part of agricultur­e, from the first seed drills to modern combine harvesters. Farm equipment is now regularly outfitted with sensors that use machine learning and robotics to identify weeds and calculate the amount of herbicide that needs to sprayed, for instance, or to learn to detect and pick strawberri­es.

Lately, smaller, more dexterous robots have emerged in droves. In 2014, the French company Naïo released 10 prototypes of a robot named Oz that is just 1m long and weighs roughly 125kg. It assembles phenotypes of vegetable crops even as it gobbles up weeds. EcoRobotix, based in Switzerlan­d, makes a solar-powered robot that rapidly identifies crops and weeds; the device resembles an end table on wheels. The household appliance-maker Bosch has also tested a robot called BoniRob for analysing soil and plants.

“All of a sudden, people are starting to realise that data collection and analysis tools developed during the 90s technology boom can be applied to agricultur­e,” said George Kantor, a senior systems scientist at Carnegie Mellon University, who is using his own research to develop tools for estimating crop yields.

The TerraSenti­a is among the smallest of the farmbots available today. At 30cm wide and roughly the same height, the 12kg robot fits well between rows of various crops. It also focuses on gathering data from much earlier in the agricultur­al pipeline: the research plots where plant breeders select the varieties that ultimately make it to market.

The data collected by the TerraSenti­a is changing breeding from a reactionar­y process into a more predictive one. Using the robot’s advanced machine-learning skills, scientists can collate the influence of hundreds, even thousands, of factors on a plant’s future traits, much like doctors utilise genetic tests to understand the likelihood of a patient developing breast cancer or Type 2 diabetes.

“Using phenotypin­g robots, we can identify the best-yielding plants before they even shed pollen,” said Mike Gore, a plant biologist at Cornell University. He added that doing so can potentiall­y cut in half the time needed to breed a new cultivar — a plant variety produced by selective breeding — from roughly eight years to just four.

SOWING A NICHE

The demands on agricultur­e are rising globally. The human population is expected to climb to 9.8 billion by 2050 and 11.2 billion by 2100, according to the United Nations. To feed the world — with less land, fewer resources and a changing climate — farmers will need to augment their technologi­cal intelligen­ce.

The agricultur­al giants are interested. Corteva, which spun off from the merger of Dow Chemical and DuPont in 2016, has been testing the TerraSenti­a in fields across the United States.

“There’s definitely a niche for this kind of robot,” said Neil Hausmann, who oversees research and developmen­t at Corteva. “It provides standardis­ed, objective data that we use to make a lot of our decisions. We use it in breeding and product advancemen­t, in deciding which product is the best, which ones to move forward and which ones will have the right characteri­stics for growers in different parts of the country.”

Chowdhary and his colleagues hope that partnershi­ps with big agribusine­sses and academic institutio­ns will help subsidise the robots for smallholde­r farmers. “Our goal is to eventually get the cost of the robots under US$1,000 [30,000 baht],” he said.

THE ROAD TO IMPROVEMEN­T

Before the TerraSenti­a can advance crop breeding for a wide swath of farmers, it must perfect a few more skills. Occasional­ly, it trips over branches and debris, or its wheels get stuck in muddy soil, requiring the user to walk behind the rover and right its course as needed.

“Hopefully, by next year we’ll be able to train the TerraSenti­a so even more users won’t have to be anywhere in the field,” Chowdhary said.

The main office of EarthSense, in Urbana, Illinois, is full of early versions of robotic technology that didn’t quite pan out. Initial prototypes of TerraSenti­a lacked a proper suspension system, so the robot jumped into the air and disrupted the video streams whenever researcher­s set it loose in a deeply rutted field. Another design kept melting from the heat of the robot’s motors, until researcher­s switched plastics and added metal shielding.

Those early, cracked chassis are now stacked on a shelf, like a museum display: a reminder of the need for improvemen­t but also of the excitement that the robot has generated.

“A lot people who tried the early prototypes still came back to us, even after having robots that essentiall­y broke on them all the time,” Chowdhary said. “That’s how badly they needed these things.”

We can identify the best-yielding plants before they even shed pollen

 ??  ?? A TerraSenti­a robot in a research field in Farmer City, Illinois.
A TerraSenti­a robot in a research field in Farmer City, Illinois.
 ??  ?? Girish Chowdhary, holding a TerraSenti­a robot, and Chinmay Soman, left, with Tim Smith at one of Smith’s research fields in Farmer City.
Girish Chowdhary, holding a TerraSenti­a robot, and Chinmay Soman, left, with Tim Smith at one of Smith’s research fields in Farmer City.

Newspapers in English

Newspapers from Thailand